Veicoli elettrici per la nettezza urbana

Fornitura di 8 veicoli elettrici dotati di vasca ribaltabile da adibire al servizio di nettezza urbana.

<table>
<thead>
<tr>
<th>Stazione appaltante:</th>
<th>CIDIU SERVIZI S.p.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contratto:</td>
<td>8 veicoli elettrici per la nettezza urbana</td>
</tr>
<tr>
<td></td>
<td>Aggiudicato: 8 Novembre 2017</td>
</tr>
<tr>
<td>Risparmi:</td>
<td>• 17 tonCO2 /anno</td>
</tr>
<tr>
<td></td>
<td>• 0,03 GWh/anno di energia primaria</td>
</tr>
<tr>
<td></td>
<td>• 8.524 €/anno</td>
</tr>
</tbody>
</table>

- Contratto per la fornitura di 8 veicoli dotati di vasca ribaltabile da adibire al servizio di nettezza urbana aventi motorizzazione esclusivamente elettrica di lunghezza circa 3,8 m e larghezza circa 1,4 m
- L’analisi del ciclo di vita mostra un sostanziale benefit economico grazie all’uso dei veicoli elettrici
- I veicoli serviranno 17 comuni della provincia di Torino
- La fornitura è parte della graduale sostituzione dei veicoli CIDIU con nuovi mezzi elettrici
- La gara è stata aggiudicata per un valore di 183.900,00 € (IVA esclusa) a Exelentia srl
Procurement Approach

L’acquisto degli 8 veicoli elettrici costituisce uno dei 5 lotti, l’unico di mezzi elettrici, di un appalto più grande per la fornitura di 20 veicoli a ridotto impatto ambientale (tutti conformi allo standard EURO 6).

La società CIDIU Servizi S.p.A., certificata ISO 14001, sta progressivamente aumentando il numero di mezzi a basso impatto ambientale, sostituendo quelli vecchi con altrettanti ad alimentazione elettrica. Oltre ai veicoli con vasca ribaltabile ha già nella propria flotta altri mezzi elettrici: 1 idropulitrice ad alta pressione per il lavaggio degli arredi urbani, 1 sabbiatrice per la rimozione dello sporco dai muri, 6 minicar, 1 spazzatrice e 2 compattatori per la raccolta della frazione organica, questi ultimi ad alimentazione ibrida (elettrico/diesel). CIDIU possiede già un impianto di ricarica per i veicoli elettrici che sarà utilizzato anche per i nuovi mezzi.

La scelta dei nuovi NEV (Neighbourhood electric vehicles – veicoli elettrici di quartiere\(^1\)) coglie perfettamente l’invito che arriva dalla Comunità Economica Europea a puntare sulla diminuzione delle emissioni in atmosfera: questi veicoli elettrici di prossimità urbana consentono alle persone di spostarsi e lavorare in modo efficiente e rispettoso dell’ambiente.

Il bando è stato pubblicato il 20 Luglio 2017 e l’aggiudicazione è avvenuta con il criterio dell’offerta economicamente più vantaggiosa l’8 Novembre 2017.

Exelentia srl ha fornito dei veicoli modello GOUPL G3 allestiti con vasca ribaltabile per le operazioni d’igiene urbana, in particolare per lo spazzamento manuale, lo svuotamento dei cestini, la pulizia di giardini e grazie alla loro versatilità e alla ridotta rumorosità, impiegati anche per le operazioni di igiene urbana nei centri storici.

Joint procurement

CIDIU è un consorzio che serve 17 comuni della provincia di Torino: Alpignano, Buttiiglieri Alta, Coazze, Collegno, Druento, Giaveno, Grugliasco, Pianezza, Reano, Rivoli, Rosta, Sangano, San Gillio, Trana, Valgirio, Venaria Reale e Villarbasse, per una popolazione di circa 260.000 residenti.

I mezzi elettrici acquistati saranno a servizio di tutti i comuni consorziati.

Needs analysis

L’area metropolitana torinese è soggetta a frequenti superamenti delle soglie limite dei principali inquinanti atmosferici ed in particolare del PM\(_{10}\). Ormai da qualche anno, durante la stagione invernale le amministrazioni comunali vietano la circolazione dei mezzi più inquinanti. CIDIU ha

\(^1\) Piccoli, bassa velocità, veicoli elettrici di bassa gamma, progettati per l’uso a livello di quartiere.
deciso di sostituire progressivamente gran parte della sua flotta con mezzi elettrici, impegnandosi inoltre in iniziative di educazione ambientale rivolte alle scuole e ai cittadini.

Market engagement

Attraverso la collaborazione con l’associazione NEV Mobility Europe sono state sondate le disponibilità del mercato europeo in tema di veicoli elettrici di prossimità.

Il 22 Giugno 2017 CIDIU ha organizzato un evento con la collaborazione di NEV Mobility Europe (Associazione europea dei veicoli elettrici per la mobilità di prossimità nelle città e lo sviluppo dell’economia locale) per promuovere l’uso dei veicoli elettrici di vicinanza e presentare la propria politica ambientale e le future intenzioni di acquisto di nuovi mezzi elettrici.

Il 23 Settembre 2017 CIDIU ha organizzato un secondo evento per promuovere la mobilità sostenibile e presentare i mezzi elettrici e ibridi che l’azienda ha messo in campo per operare sul territorio urbano con un minor impatto inquinante.

Tender specifications and Verification

SPECIFICHE TECNICHE

- Veicolo con motore elettrico senza spazzole, allestito con vasca ribaltabile per la nettezza urbana
- Portata maggiore o uguale a 600 kg;
- Larghezza minore o uguale 1.400 mm;
- Lunghezza minore o uguale 3.800 mm;
- Raggio sterzata minore o uguale a 4.000 mm;
- BATTERIE: autonomia della carica delle batterie sufficiente a percorrere almeno 90 km/giorno;

CRITERI DI AGGIUDICAZIONE

- Offerta economica (max 30 punti)
- Offerta tecnica (max 70 punti) suddivisi in:

2 http://nev_mobility.eu
- 20 punti per la manovrabilità
- 19 punti per le caratteristiche della vasca ribaltabile
- 16 punti per il confort di guida
- 15 punti per i consumi energetici delle batterie (kWh/km)

Verifiche

I veicoli saranno sottoposti a collaudo di accettazione entro 7 giorni dalla consegna per verificare la rispondenza alle caratteristiche obbligatorie richieste dal capitolato.

Results

Impatti ambientali

La flotta di 8 veicoli porterà ad una riduzione stimata in termini di emissioni di CO₂ in relazione al consumo di carburante pari al 66% (17 Ton di CO₂ evitate). In termini energetici, l’utilizzo di questi veicoli comporta un risparmio di energia primaria del 33%, pari a 27,5 MWh/anno (vedi Tabella 1).

L’eletricità utilizzata da CIDIU è per il momento acquistata da ENEL ma CIDIU Servizi SpA sta avviando l’installazione di un parco fotovoltaico sul tetto del deposito dei mezzi in grado di generare l’energia sufficiente alla ricarica di tutti i mezzi. Una volta installato, è previsto che i pannelli verranno utilizzati per ricaricare le batterie direttamente.

I veicoli elettrici per la nettezza urbana non emettono inquinanti nocivi locali - in particolare ossidi di azoto (NOx) e particolato (PM) - e anche le emissioni acustiche sono pressoché assenti.

Per modello “Baseline” si intende il veicolo sostituito (Piaggio Porter a benzina EURO 3).

Tabella 1: Risparmi ambientali

<table>
<thead>
<tr>
<th>Bando</th>
<th>Consumi</th>
<th>Distanza media percorsa (km/anno)</th>
<th>Emissioni di CO₂ (tonnellate/anno)</th>
<th>Consumo di Energia Primaria (GWh/anno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline – Benzina EURO 3</td>
<td>8 l/100 km</td>
<td>17.829</td>
<td>32</td>
<td>0,10</td>
</tr>
<tr>
<td>Bando Convenzionale – Benzina EURO 6</td>
<td>6,5 l/100 km</td>
<td></td>
<td>26</td>
<td>0,08</td>
</tr>
<tr>
<td>Elettrico – Bando</td>
<td>15,4</td>
<td></td>
<td>9</td>
<td>0,05</td>
</tr>
</tbody>
</table>

www.sppregions.eu
CALCULATION BASIS

- Fattore di emissione della CO₂ pari a 0,404652 kg/kWh
- Per il consumo di energia primaria il PEF (Primary Energy Factor) assunto è stato pari a 2,5
- Calcoli più dettagliati sono inclusi nella tabella in allegato

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>NMVOC (g/km)</th>
<th>NOx (g/km)</th>
<th>PM2.5 (g/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline – Benzina EURO 3</td>
<td>1,2675</td>
<td>0,2717</td>
<td>0,0188</td>
</tr>
<tr>
<td>Bando convenzionale – Benzina EURO 6</td>
<td>0,5665</td>
<td>0,0997</td>
<td>0,0183</td>
</tr>
<tr>
<td>Elettrico – Bando Green</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fonte: ISPRA “La banca dati dei fattori di emissione medi del trasporto stradale in Italia”

Impatti finanziari

I veicoli elettrici sono costruiti secondo il principio di razionalità ed efficienza. Per questo motivo non hanno al proprio interno tutte le parti di usura dei veicoli a combustione quali filtri, liquidi, organi di usura come frizioni o pompe di alimentazione. Questa semplicità costruttiva abbatte drasticamente i costi di manutenzione di circa l’70%. Per questo motivo CIDIU ha deciso di non includere il servizio di manutenzione inquinanti e quelle acustiche.

INNOVATIVE SOLUTION

L’utilizzo di mezzi elettrici è ideale nei centri storici dei paesi serviti da CIDIU, poiché in vie strette e con pavimentazioni antiche è molto importante ridurre le emissioni inquinanti e quelle acustiche.
full-service nella gara; è stato stimato che, nonostante un cambio di batterie, i costi di manutenzione sarebbero stati inferiori al prezzo richiesto per il full-service.

L’analisi LCC mostra che l’intera flotta consente di risparmiare circa 7.500 € in 7 anni.

Life Cycle Costing

In seguito alla gara è stato condotto un confronto completo dei costi del ciclo di vita confrontando il modello elettrico acquistato con l’equivalente a benzina (alternativa potenziale). Questa analisi è stata effettuata da Arpa Piemonte, utilizzando lo strumento “Vehicles - Life Cycle Cost (LCC) Calculator” sviluppato da Clean Fleets\(^1\). In questo caso, si trattava di un confronto tra:

- Piaggio Porter con vasca ribaltabile a benzina Euro 6 (alternativa potenziale)
- Goupil G3 elettrico con vasca ribaltabile

Per il calcolo sono stati necessari i seguenti dati:

- costi di acquisizione
- costi operativi (uso del veicolo, tipo di carburante, prestazioni, ecc.)
- costi di manutenzione (comprensivi della sostituzione batterie, ipotizzata dopo 6,5 anni)
- costo delle emissioni sulla base della metodologia dei costi di esercizio prescritta nella direttiva Veicoli Puliti (2009/33 / CE), che dà un valore alle emissioni di CO\(_2\), NOx, particolato (PMS), e NMHC\(^4\)

<table>
<thead>
<tr>
<th>Bando</th>
<th>Vita utile (anni)</th>
<th>Distanza media percorsa da ciascun veicolo nella vita utile (km)</th>
<th>LCC (€/unit)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzina EURO 6 – Bando convenzionale</td>
<td>7</td>
<td>17.829</td>
<td>39.436,56</td>
</tr>
<tr>
<td>Elettrico – Bando green</td>
<td></td>
<td></td>
<td>31.978,22</td>
</tr>
</tbody>
</table>

Costs during the vehicle life cycle

*Ipotesi: Prezzo Diesel 1,5 €/L; prezzo elettricità: 0,15 €/kWh; costi di manutenzione veicolo a benzina: 2.000€; costo di manutenzione veicolo elettrico -70% rispetto a benzina; costo d’acquisizione veicolo a benzina 15.150€; prezzo d’acquisizione veicolo elettrico 22.987,50 €; consumi di carburante per veicolo a benzina: 6,5 l/100km; consum di elettricità per veicolo elettrico: 15,4 kWh/100km; durata batterie: 6 anni.

Come mostrato nel grafico successivo, i veicoli elettrici, nonostante un costo di acquisto elevato, hanno un minor consumo di carburante, minori costi di manutenzione e ambientali (a causa delle emissioni) nell’orizzonte di pianificazione considerato (7 anni). I risultati dimostrano che questi costi più bassi compensano il costo di acquisto più elevato nel lungo periodo.

Dalla metodologia LCC si ricava che l’intera flotta consente un risparmio nei 7 anni di circa 60.000€.

Diagramma 1: Costi totali per ciascun modello alla fine dell’orizzonte di pianificazione

Impatti sociali

www.sppregions.eu
I veicoli elettrici per la nettezza urbana migliorano il rapporto dell’azienda con i cittadini poiché non emettono sostanze nocive in atmosfera e sono silenziosi, rappresentano il modo migliore di operare nei centri storici e nelle piccole città.

CIDIU è impegnata in programmi di educazione ambientale per le scuole, alle quali propone degli incontri in classe per comprendere l’uso sostenibile delle risorse, diffondere la cultura del rispetto del territorio urbano, le buone pratiche di riduzione degli sprechi, del riuso, dello scambio e la corretta gestione dei rifiuti.

Market response

Sul mercato è presente almeno un altro importante concorrente (Alkè) che probabilmente non ha giudicato la base d’asta sufficientemente remunerativa. Esistono poi costruttori minori che hanno contattato CIDIU ma che non ritengono di essere ancora in grado di fornire in modo affidabile flotte di veicoli di quel tipo.

Entro il 2018 CIDIU ha intenzione di ampliare ulteriormente la sua flotta di mezzi elettrici.

Lessons learned and future challenges

Lezioni imparate

- I veicoli elettrici acquistati sono perfettamente in grado di sostituire i normali veicoli termici, grazie ad autonomia e affidabilità comprovate, oltre a ridotti ingombri e agilità di manovra. Inoltre l’efficienza economica dell’acquisto è riscontrabile in pochi anni.

- L’utilizzo di veicoli elettrici di prossimità dona un immediato ritorno d’immagine con la cittadinanza e dimostra coerenza dell’ente con gli obiettivi di riduzione d’impatto ambientale. Inoltre la cittadinanza si sente maggiormente stimolata a collaborare in nuove attività a basso impatto ambientale.

- La sfida futura riguarda l’impianto necessario alla ricarica, il quale è spesso sottovalutato in fase di gara, mentre invece è molto importante chiarire bene tutti gli aspetti impiantistici con i propri installatori.

www.sppregions.eu
CONTACT
Tiziana VOGLINO
CIDIU Servizi S.p.A.
via Torino 9 - 10093 Collegno (To)
http://www.cidius.to.it/cidiuservizi
Annex 1 - Calculation of environmental savings

- **LCC Calculator and Emission savings Calculator**

<table>
<thead>
<tr>
<th>GENERAL CONDITIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract length/period of vehicle ownership</td>
<td>Year</td>
</tr>
<tr>
<td>Discount rate</td>
<td>%</td>
</tr>
<tr>
<td>Number of kilometers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACQUISITION COSTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of bidder/vehicle model</td>
<td></td>
</tr>
<tr>
<td>Euro 6</td>
<td>Electric</td>
</tr>
<tr>
<td>Number of vehicles</td>
<td>0</td>
</tr>
<tr>
<td>Purchase price</td>
<td>€15,500,00</td>
</tr>
<tr>
<td>For lease</td>
<td>€22,367,50</td>
</tr>
<tr>
<td>COSTS OF ACQUISITION/UNIT</td>
<td>€15,500,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATING COSTS PER VEHICLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual use of vehicle</td>
<td>km</td>
</tr>
<tr>
<td>Type of Fuel</td>
<td>Petrol</td>
</tr>
<tr>
<td>Fuel consumption per vehicle</td>
<td>l/100 km</td>
</tr>
<tr>
<td>Efficient fuel price</td>
<td>€1.50</td>
</tr>
<tr>
<td>Add a second fuel type (PHEV, dual fuel)?</td>
<td>No</td>
</tr>
<tr>
<td>Type of Fuel 2</td>
<td>Electric</td>
</tr>
<tr>
<td>Fuel consumption per vehicle 2</td>
<td>l/100 km</td>
</tr>
<tr>
<td>Fast price 2</td>
<td></td>
</tr>
<tr>
<td>Replacement battery price</td>
<td>€2,400</td>
</tr>
<tr>
<td>Expected lifetime of battery</td>
<td>Years</td>
</tr>
<tr>
<td>Battery lease price</td>
<td>€</td>
</tr>
<tr>
<td>OPERATING COSTS/UNIT</td>
<td>€10,337.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAINTENANCE COSTS PER VEHICLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated annual maintenance costs</td>
<td>€2000.00</td>
</tr>
<tr>
<td>Annual service agreement</td>
<td>€600.00</td>
</tr>
<tr>
<td>MAINTENANCE COSTS/UNIT</td>
<td>€17,945.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TAXES AND OTHER COSTS/SUBSIDIES PER VEHICLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle tax</td>
<td>€</td>
</tr>
<tr>
<td>Insurance costs</td>
<td>€</td>
</tr>
<tr>
<td>Infrastructure - one off investment costs</td>
<td>€</td>
</tr>
<tr>
<td>Infrastructure - annual costs</td>
<td>€</td>
</tr>
<tr>
<td>Other costs (CBD)</td>
<td>€</td>
</tr>
<tr>
<td>TOTAL OTHER COSTS AND SAVINGS/UNIT</td>
<td>€</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMISSIONS OF NATIONAL LIFETIME COST - GCPE PER VEHICLE - OPTIONAL SECTION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2, g/km</td>
<td>1112</td>
</tr>
<tr>
<td>Lifetime cost of CO2 emissions/g unit</td>
<td>€88.42</td>
</tr>
<tr>
<td>NOx, g/km</td>
<td>0.6947</td>
</tr>
<tr>
<td>PM10 (particulate matter)</td>
<td>g/km</td>
</tr>
<tr>
<td>NMHC (Non-methane hydrocarbons)</td>
<td>g/km</td>
</tr>
<tr>
<td>Lifetime cost of pollutant emissions/g unit</td>
<td>€724.16</td>
</tr>
<tr>
<td>Operation fuel cost (before tax)</td>
<td>€</td>
</tr>
<tr>
<td>Cost of Operation Fuel (before tax)</td>
<td>€</td>
</tr>
<tr>
<td>Lifetime cost of energy consumption/km</td>
<td>€</td>
</tr>
<tr>
<td>OPERATION LIFETIME COST (GCPE)/UNIT</td>
<td>€1,800.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>END OF LIFE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Remaining value (end of contract period)</td>
<td>€</td>
</tr>
</tbody>
</table>

<p>| TOTAL LCC PER UNIT | €31,436.56 |
| TOTAL LCC | €31,492.46 | €236,628.79 |</p>
<table>
<thead>
<tr>
<th>Location</th>
<th>CO2 emissions per kWh (kg CO2/kWh)</th>
<th>0.405</th>
</tr>
</thead>
</table>

Input

<table>
<thead>
<tr>
<th>Kind of fuel</th>
<th>Amount of fuel per 100 km</th>
<th>Quantity of vehicles</th>
<th>Average distance per vehicle per year (km/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrol</td>
<td>5.0</td>
<td>8</td>
<td>17,829</td>
</tr>
<tr>
<td>Diesel</td>
<td>6.5</td>
<td>8</td>
<td>17,829</td>
</tr>
<tr>
<td>Diesel</td>
<td>6.5</td>
<td>8</td>
<td>17,829</td>
</tr>
<tr>
<td>Petrol</td>
<td>5.0</td>
<td>8</td>
<td>17,829</td>
</tr>
<tr>
<td>Electricity</td>
<td>kWh/100 km</td>
<td>8</td>
<td>17,829</td>
</tr>
<tr>
<td>Electricity</td>
<td>kWh/100 km</td>
<td>8</td>
<td>17,829</td>
</tr>
<tr>
<td>Electricity</td>
<td>kWh/100 km</td>
<td>1</td>
<td>1,450</td>
</tr>
<tr>
<td>Electricity</td>
<td>kWh/100 km</td>
<td>1</td>
<td>1,450</td>
</tr>
</tbody>
</table>

Total consumption and emissions

<table>
<thead>
<tr>
<th>Kind of fuel</th>
<th>Annual fuel consumption (liters)</th>
<th>CO2 emissions per year (t)</th>
<th>Primary energy consumption (kWh/yr)</th>
<th>Annual fuel consumption (liters)</th>
<th>CO2 emissions per year (t)</th>
<th>Primary energy consumption (kWh/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrol</td>
<td>0.10</td>
<td>0.08</td>
<td>1</td>
<td>0.10</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Diesel</td>
<td>0.08</td>
<td>0.08</td>
<td>0</td>
<td>0.08</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Diesel</td>
<td>0.08</td>
<td>0.08</td>
<td>0</td>
<td>0.08</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Petrol</td>
<td>0.10</td>
<td>0.08</td>
<td>1</td>
<td>0.10</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Electricity</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electricity</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Savings

<table>
<thead>
<tr>
<th>Kind of fuel</th>
<th>Total savings (baseline / green tender) (kWh/yr)</th>
<th>Percentage of energy savings</th>
<th>Percentage of CO2 savings</th>
<th>Total savings (conventional tender / green tender) (kWh/yr)</th>
<th>Percentage of energy savings</th>
<th>Percentage of CO2 savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrol</td>
<td>0.10</td>
<td>32</td>
<td>100%</td>
<td>0.08</td>
<td>26</td>
<td>100%</td>
</tr>
<tr>
<td>Diesel</td>
<td>0.08</td>
<td>0</td>
<td>0%</td>
<td>0.08</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Diesel</td>
<td>0.08</td>
<td>0</td>
<td>0%</td>
<td>0.08</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Petrol</td>
<td>0.10</td>
<td>32</td>
<td>100%</td>
<td>0.08</td>
<td>26</td>
<td>100%</td>
</tr>
<tr>
<td>Electricity</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Electricity</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL FOR THE PROJECT</td>
<td>0.05</td>
<td>23</td>
<td>46%</td>
<td>0.03</td>
<td>17</td>
<td>33%</td>
</tr>
</tbody>
</table>
About SPP Regions

SPP Regions is promoting the creation and expansion of 7 European regional networks of municipalities working together on sustainable public procurement (SPP) and public procurement of innovation (PPI).

The regional networks are collaborating directly on tendering for eco-innovative solutions, whilst building capacities and transferring skills and knowledge through their SPP and PPI activities. The 42 tenders within the project will achieve 54.3 GWH/year primary energy savings and trigger 45 GWh/year renewable energy.

SPP REGIONS PARTNERS

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 649718. The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.